🍐 我们总结了加拿大代写中——统计代写的经典案例,如果你有任何UVIC代写的需要,可以随时联络我们。CoursePear™ From @2009。

Q1 (10 points) 

f(x) g(y) ∫ f(x) dx = g(y) dy = 1  

−∞ 

If and are non-negative functions such that , let the pair of continuously −∞ 

fX,Y (x, y) = f(x)g(y) 

distributed random variables have p.d.f. given by . 

a) Find the marginal distributions of and ; 

X Y 

b) Find the conditional distribution of given that ; and the conditional distribution of given that . X Y = y Y X = x 

c) Explain why the answers in parts a) and b) are unsurprising. 

Q2 (10 points) 

X Y {1, 2, 3, 4, 5} fX,Y (x, y) 

Suppose and are discrete random variables taking values in where is proportional to  x × y fX,Y (x, y) = cxy 1 ≤ x, y ≤ 10 c 

, that is for . Find the value of (Hint: the distributive law might make the calculations simpler). 

Q3 (10 points) 

(X,Y ) 

The random variables are jointly continuously distributed and have density 

fX,Y (x, y) = {e−y 

a) Calculate the marginal p.d.f’s and ; 

fX fY 

b) Find the conditional distributions and . fX|Y (x|y) fY|X (y|x) 

c) Are and independent? 

X Y 

if y ≥ x ≥ 0; otherwise. 

d) Interpret the conditional distributions that you obtained in part b) above. (Are these conditional distributions distributions that you have seen before?) 

Q4 (10 points) 

(X,Y ) {(x, y):x, y ≥ 0;x + y ≤ 1} P(X > 2Y ) Let be uniform random variables on the region . Compute . 

Q5 (10 points) 

X ∼ N(μ, ) σ2 

Let . 

a) Write down the m.g.f., of ; 

MX

t u(x) = etx P(X > z) 

b) If is a fixed positive number, write , and use Markov’s inequality to estimate in terms of  MX (z) 

c) If is fixed, find the best (i.e. minimum) estimate for that you can obtain by changing the number . z P(X > z) t 

Q6 (10 points) 

X λ fX (x) = λe−λx x ≥ 0 Let be an exponential random variable with parameter (that is, for ). Y ⌊X⌋ Z Z = frac(X) = X − Y 

Let be the discrete random variable and be the continuous random variable , the X 

integer and fractional parts of respectively. 

a) Find the c.d.f. of (it may help to think about which values of give rise to values of that are ); Y X Y ≤ n 

b) Find the c.d.f. of (it may help to think about which values of give rise to values of that are ; you may need Z X Z ≤ t 

to sum a geometric series); 

(Y ,Z) a(1 + r + + … + ) r 

c) Find the joint c.d.f. of . (Hint: the sum of a finite geometric series, is  

2 rn 

a(1 − )/(1 − r r) 

n+1 

.) 

d) Show that and are independent. 

Y Z 

CoursePear™是一家服务全球留学生的专业代写
—-我们专注提供高质靠谱的美国、加拿大、英国、澳洲、新西兰代写服务。
—-我们专注提供Essay、统计、金融、CS、经济、数学等覆盖100+专业的作业代写服务。

统计代写
统计作业代写

CoursePear™提供各类学术服务,Essay代写Assignment代写Exam / Quiz助攻Dissertation / Thesis代写Problem Set代做等。